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ADDENDUM 

Higher-order JWKB approximations for radial problems: 111. 
The rzm oscillator 
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Department of Theoretical Physics, University of Madras, Guindy Campus, Madras 
600 025, India 

Received 25 April 1984, in final form 5 November 1984 

Abstract. Higher-order JWKB approximations are applied to the calculation of energy 
levels of an oscillator with the potential V ( r )  = r2"' ( m  integer). The JWKB quantisation 
condition for the energy W is shown to be expressible as 

(n+;)n=AX+BX-'+CX-3+. . . 
where X = W(m")'2m. The /-dependent coefficients A, B, C are determined exactly by 
taking into account contributions from all orders. On inversion the above series yields an 
explicit analytical formula for the energy levels. Extension of the result to d dimensions 
is immediate. 

1. Introduction 

Recently we have considered the application of higher-order JWKB approximations to 
the radial Schrodinger equation (Seetharaman and Vasan 1984, Vasan and Seetharaman 
1984, to be referred to as I and I1 respectively). We derived in I1 an explicit analytical 
formula for the energy eigenvalues of the quartic oscillator V ( r )  = r4 ,  by including 
corrections up to the fourth order of the approximation. This formula was found to 
be in excellent agreement with known numerical eigenvalues. In this addendum we 
generalise the formula to the case of the oscillator with the potential V (  r )  = rZm,  m being 
a positive integer. First we show that the quantisation condition for the energy W can 
be put in the form 

( 1 )  

where X = W("'+1)/2m . We then show how the coefficients A, B and C can be evaluated 
exactly, after taking into account all orders of the approximation. An explicit formula 
for the energy is obtained by inverting the above series. As the formalism has been 
dealt with at length in I1 for the quartic oscillator, we shall present here only the 
essential details. 

T( n + $) = AX + BX - I  + CX-3 + . . . 

2. Energy quantisation condition 

For the potential V ( r )  = rZm, it proves convenient to define 

9 , U = ( I  +&)2/2X2, F ( 2 )  = z -  zm+ l  -U. 

(2) 

= r 2  w - I / m  x = w ( m + l ) / Z m  

0305-4470/85/061041+ 05$02.25 0 1985 The Institute of Physics 1041 



1042 M Seetharaman and S S Vasan 

The energy quantisation condition in the fourth order of the approximation can be 
written as 

(2n,+ 1 ) ~  = J0+J2+J4 (3) 

where 

X-l f dz z"'F-~/,, m ( m + l )  
24& 

J2 = 

J4=- &' m(m+1)X-3  128 f dz[gm(m+ l ) ~ ' " ' + I F - ' / ~ + & ( 5 m + 6 ) ( m -  ~ ) z " F - ~ / ~ ] .  

(4) 

The above expressions for the higher-order JWKB terms J, have been obtained by 
putting V( r )  = r2"' in the formulae given in the appendix of I I t .  The contour of 
integration is traversed clockwise around the branch cut joining the two branch points 
of F'l2  which are located at the classical turning points of the problem. To first order 
in a, these turning points are at z = a and z = 1 - a/ m. The branch of F"' chosen is 
that which is positive real on the upper lip of the cut. 

2.1. U expansion of the integrals 

It is clear that in order to cast the quantisation condition into the form ( l ) ,  we should 
expand the integrals in J, and retain all terms up to O( U')  in Jo, O(o) in J2 and O( 1) 
in J4. This expansion is valid, since all our contour integrals have a well defined small 
o expansion. 

Let Zi(a) denote the integral alone in Ji. Considering first I,, one finds after a 
careful inspection that its U expansion is of the form 

Io( U )  = a, + bo& + cor  + d 0 ~ 3 / 2  + eoa2 + . , . , ( 5 )  
The coefficients in ( 5 )  can be determined successively by differentiating Io and setting 
u=O. In this process, we must evaluate integrals of the form 

f dz z0/,( 1 - z"')~/' 

with the branch points now at z = 0 and z = 1. The evaluation of such integrals is 
outlined in the appendix. Using the result (Al )  of the appendix, we find 

ao=Z(-1, l) ,  bo= - 2 ~ ,  c, = -mZ(2m - 3,3)/2,  do = 0, 
(6) 

eo= -mZ(2m-5, -5)/8. 

We take I2  next. Its expansion is 

12(u) =a,+  b 2 u + .  . . . (7)  

Evaluating the coefficients as before, we get 

a, = Z(2m - 3, -3), b, = 3 2 ( 2 m  - 5,  -5)/2. (8) 
t T h e  formula for J4 given in the appendix of I 1  should read . . . 1 6 r - 3 . .  , not . . . 1 6 r . .  . , 
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Finally, the value of Z4 (a = 0) = a4 is found to be 

a4=7m(m + 1)Z(4m - 5 ,  -7)/2+(5m +6)(m - 1)Z(2m - 5 ,  -5)/15. 

Adding all these terms and grouping like powers of X, we find 

Jo+ 52 + 54 
m(m+l )  

24 
azX-l 

1 

m ( m + l )  a4x-3) + . . . m ( m + l )  
24 64 

b2c~X-I- 

= AX - ~ ( l + ; ) +  BX-’+ CX-3+. . 
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(9) 

where the coefficients A, B, C have the following expressions: 

A = & B ( ~ ,  1 /2m)/ (m+l) ,  

B = ( m  - I)[-(m+ 1)/6+(1+f)Z]B(f, 1 - 1 / 2 m ) / h 2 m ,  (11)  

C = (9 - m2)[( m + 1) (  m - 3)(4m + 3)/60+ (m + 1) (  I +$)’ - ( 1  +$)*I 
x B ( f ,  1 -3 /2m)/48h mz, 

where we have used the explicit values of Z(a,  b) in terms of beta functions (see (Al)) 
and used the properties of the beta function to rearrange the arguments. We may note 
that the leading term of the sixth order of the approximation is proportional to X-’. 
Therefore, inclusion of terms of order higher than J4 in (3) will not change the values 
of A, B, C given in (1 1). In this sense, these coefficients are exact. 

2.2. Analytical formula for W 

The quantisation condition (3) now takes the form 

?r(n +3) = AX + BX-’ + C X - ~ +  o(x-’) 
where n = 2n,+ 1. A formula for W can be obtained by inverting (12). The result is 

W = aN2m/(m+’)( 1 + bN-2 + c N - ~  + . . .) (13) 
with N = n +3. The coefficients a, b, c are related to A, B, C as follows: 

, b = -2mAB/(m + l)?r2, = ( ~ / - ) - 2 m / ( m + l )  

(14) 
c=-[mAZ/(m+1)2?r41[1(m+3)B2+2(m+ l)CA]. 

The above relations provide an explicit analytical expression for the energy levels. We 
may note that b and c are 1 dependent, while a is not. The energy levels of the rZm 
oscillator in d dimensions may be readily obtained from our formula by replacing 1 
by l+$(d-3),  and n + $  by n+d/2.  

3. Discussion 

The general formula for the energy levels of the rZm oscillator derived above gives the 
correct harmonic oscillator spectrum for m = 1, and, for m = 2, it is identical to the 
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formula for the quartic oscillator given in 11. As noted there, our formula is very 
accurate for the quartic oscillator in two and three dimensions for which exact (1 in 

numerical eigenvalues are available. When 1 = 0, the coefficients A, B, C become 
identical to the corresponding ones for the x2"' oscillator computed by Bender et a1 
(1977). This reveals that the JWKB approximation preserves the following correspon- 
dence between the exact eigenvalues of the three-dimensional Schrodinger equation 
and its one-dimensional counterpart: the s-wave energy levels in the potential V ( r )  
should coincide with the odd parity levels in the one-dimensional potential V(x), if 
V(x) is taken to be symmetric. To our knowledge, a general formula such as the one 
above has not been reported in the literature. 

It may be noted that the method outlined in this paper cannot be applied to the 
potentials V( r )  = r2"'+'. For these potentials, the contour of integration gets pinched 
between two singularities when (T = 0. Consequently, it is not possible to expand the 
integrals in powers of U. 

Appendix 

The integrals to be evaluated are all of the form 

Z( a, b )  = dz P I 2 (  1 - z" ' )~ / '  f 
where a, b are odd integers. The contour surrounds the branch cut joining z = 0 and 
z = 1. As the integral is well defined, we can replace 1 - 2"' by A - z"' and finally set 
A = 1. In this way, we can express 2 as the derivative with respect to A of another 
integral in which b has the value + 1  or -1. Then, by a suitable change of variable, 
the A dependence of the integral can be factored out and the A + 1 limit can be 
evaluated. The remaining integral, which now has only integrable singularities at z = 0 
and z = 1, can be done by compressing the contour until it coincides with the lips of 
the cut. The following calculation illustrates the procedure. 

2(9 - m 2 )  
3m2 

- - B ( $ , 1 - 3 / 2 m )  
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where B is the beta function defined by B ( x , y ) = I ' ( x ) I ' ( y ) / r ( x + y ) .  In a similar 
manner, the other integrals can be evaluated. The general result is 

Z ( a ,  b ) = ( 2 / m ) B ( l + b / 2 ,  ( a + 2 ) / 2 m ) .  ( A l l  

For a given b, the first argument of B in (A l )  can always be made $ by using the 
properties of the beta function. 
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